Notes on Veech's Theorem

Jesse Peterson

June 26, 2015

The aim of these notes is to prove the main result from [Vee79].

The following lemma is adapted from [Kec95, Theorem 8.51]. It is similar to [Nam74, Theorem 1.2], which has a slightly stronger conclusion when Y is compact.

Lemma 1. Let X be a topological space, Y and Z metric spaces, and suppose $f: X \times Y \to Z$ is separately continuous, i.e., $x \mapsto f(x,y)$ is continuous for each $y \in Y$, and $y \mapsto f(x,y)$ is continuous for each $x \in X$. Then for each $y \in Y$, there exists a subset $E_y \subset X \times \{y\}$, which is comeager in $X \times \{y\}$, such that f is continuous at each point in E_y .

Proof. For each $n, k \in \mathbb{N}$, set

$$F_{n,k} = \{(x,y) \in X \times Y \mid d_Z(f(x,u), f(x,v)) \le 2^{-n} \text{ for all } u, v \in B(y, 2^{-k})\}.$$

Since $y \mapsto f(x,y)$ is continuous for each $x \in X$ we have that $X \times Y = \cap_n \cup_k F_{n,k}$.

If $\{(x_i, y_i)\}\subset F_{n,k}$ is a net such that $x_i\to x$, and $y_i\to y$, and if $u,v\in B(y,2^{-k})$, then we may choose i_0 such that $u,v\in B(y_i,2^{-k})$ for all $i\geq i_0$, and hence $d_Z(f(x_i,u),f(x_i,v))\leq 2^{-n}$ for all $i\geq i_0$. As $x\mapsto f(x,u)$ and $x\mapsto f(x,v)$ are continuous we then have $d_Z(f(x,u),f(x,v))\leq 2^{-n}$ and hence $(x,y)\in F_{n,k}$. Thus, we have shown that $F_{n,k}$ is closed for each $n,k\in\mathbb{N}$.

Fix $y \in Y$ and set $D_y = \cup_n \cup_k \partial(F_{n,k} \cap (X \times \{y\}))$. Then D_y is meager in $X \times \{y\}$, and we will show that if $(x,y) \in E_y = (X \times \{y\}) \setminus D_y$, then f is continuous at (x,y). Indeed, let $\varepsilon > 0$, and take $k, n \in \mathbb{N}$ so that $2^{-n} \le \varepsilon$, and $(x,y) \in F_{n,k}$. Since $x \notin D_y$ we have that x is an interior point in $F_{n,k} \cap (X \times \{y\})$, and since $x \mapsto f(x,y)$ is continuous there then exists an open neighborhood V of x such that $V \times \{y\} \subset F_{n,k}$, and $d_Z(f(x,y),f(s,y)) \le \varepsilon$ for all $s \in V$. If $s \in V$, and $t \in B(y,2^{-k})$ we then have

$$d_Z(f(x,y), f(s,t)) < d_Z(f(x,y), f(s,y)) + d_Z(f(s,y), f(s,t)) < 2\varepsilon.$$

Corollary 2 (Fort [For55]). Let G be group with a Baire topology such that for each $h \in G$ the function $g \mapsto hg$ is continuous. Let X be a metric space, and suppose that $G \cap X$ is an action such that $(g, x) \mapsto gx$ is separately continuous. Then the action is jointly continuous.

Proof. Fix $(g_0, x_0) \in G \times X$. Since G is Baire, the previous lemma shows that there exists $h_0 \in G$ such that the map $(g, x) \mapsto gx$ is continuous at (h_0, x_0) . If we first apply the continuous map $(g, x) \mapsto ((h_0 g_0^{-1})g, x)$, then we see that $(g, x) \mapsto gx$ is continuous at (g_0, x_0) .

Corollary 3. Let G be a group with a topology which is metrizable and Baire (e.g., if the topology is Polish). Suppose that $(g,h) \mapsto gh$ is separately continuous, then this map is jointly continuous.

Proof. We just consider the action of the group on itself given by left multiplication and then apply the previous corollary. \Box

Theorem 4. Let G be a group with a Baire topology such that multiplication is jointly continuous. Then G is a topological group, i.e., inversion is continuous.

Proof. It is enough to show that inversion is continuous on a comeager set (and hence at some point since G is Baire). Indeed, if inversion is continuous at $a_0 \in G$ and if $a \in G$ is arbitrary, then if $a_n \to a$, then $a_n(a^{-1}a_0) \to a_0$, hence $a_0^{-1}aa_n^{-1} \to a_0^{-1}$, and we then have $a_n^{-1} \to a^{-1}$ which shows that inversion is continuous at a.

Lemma 5. Let G be a Polish group, X a Banach space, and $\pi: G \to \mathrm{Isom}(X)$ a SOT-continuous representation. If $k_n, \tilde{k}_n, g_n \in G$ such that $k_n \to k$, $\tilde{k}_n \to \tilde{k}$, and WOT- $\lim_{n \to \infty} \pi(g_n) = T$, then WOT- $\lim_{n \to \infty} \pi(k_n g_n \tilde{k}_n) = \pi(k) T\pi(\tilde{k})$.

Proof. It is enough to consider the case when X is separable. We first note that it is easy to see that WOT- $\lim_{n\to\infty} \pi(g_n\tilde{k}_n) = T\pi(\tilde{k})$. Thus, replacing g_n with $g_n\tilde{k}_n$, and T with $T\pi(\tilde{k})$ we may assume that $\tilde{k}_n = \tilde{k} = e$.

Since X is separable, $\mathcal{B}(X)$ is metrizable in the weak operator topology. It is easy to see that the action of G on $\mathcal{B}(X)$ by left multiplication is separately continuous. Fort's joint continuity theorem then shows that the action of G on $\mathcal{B}(X)$ is jointly continuous. Hence, as $k_n \to k$, and WOT- $\lim_{n\to\infty} \pi(g_n) = T$ it follows that WOT- $\lim_{n\to\infty} \pi(k_n g_n) = \pi(k)T$.

Lemma 6 (Mautner [Mau57]). Let G, X, and π be as above. If $g, a_n \in G$, such that WOT- $\lim_{n\to\infty} \pi(a_n) = T$, and $a_n^{-1}ga_n \to e$, then $\pi(g)T = T$.

Proof. We have $\pi(g)T = \text{WOT-lim}_{n \to \infty} \pi(ga_n) = \text{WOT-lim}_{n \to \infty} \pi(a_n(a_n^{-1}g_na_n)) = T.$

Theorem 7 (Veech [Vee79]). Let G be a simple Lie group, X a Banach space and $\pi: G \to \text{Isom}(X)$ a SOT-continuous representation such that $\pi(G)$ is WOT-precompact, then any WOT-cluster point of $\pi(G)$ is a projection onto the space of G-invariant vectors.

Proof. We prove only the case $G = SL_2(R)$, leaving the general case to the reader. We let A_+ denote the group of diagonal matrices in G which have positive diagonal entries and we let K = SO(2) < G. We recall the Cartan decomposition $G = KA_+K$.

Suppose $g_n \in G$ is a sequence converging to infinity in G and let T be a WOT-cluster point. We write $g_n = k_n a_n \tilde{k}_n$ in the Cartan decomposition and taking a subsequence we will assume that for $k, \tilde{k} \in K$ we have $k_n \to k, \tilde{k}_n \to \tilde{k}$, and WOT- $\lim_{n\to\infty} \pi(g_n) = T$. By Lemma 5 we then have $S = \text{WOT-}\lim_{n\to\infty} \pi(a_n) = \pi(k)T\pi(\tilde{k})$.

Without loss of generality we assume that the first entry in the matrices a_n are tending to infinity so that $a_n^{-1}xa_n\to e$ for all $x\in N_+$. Hence, by Mautner's lemma we have that $\pi(x)S=S$ for all $x\in N_+$. Since, N_+ is non-compact we may again use the Cartan decomposition to conclude that there is a sequence $b_n\in A_+,\ h_n,\tilde{h}_n\in K$, and $h,\tilde{h}\in K$, such that $b_n\to\infty,\ h_n\to h,\ \tilde{h}_n\to\tilde{h}$, and $\pi(h_nb_n\tilde{h}_n)S=S$ for all $n\in\mathbb{N}$. Therefore we have SOT-lim $_{n\to\infty}\pi(b_n)\pi(\tilde{h})S=\pi(h)S$.

Now fix $x \in X$ in the range of $\pi(\tilde{h})S = \pi(k\tilde{h})T\pi(\tilde{k})$. Since $b_n \to \infty$, and $\pi(b_n)x$ converges it follows that for each $\varepsilon > 0$, $\{b \in A_+ \mid \|\pi(b)x - x\| < \varepsilon\}$ is non-compact. Thus, there exists a sequence $c_n \in A_+$ such that SOT- $\lim_{n\to\infty} \pi(c_n)x = x$. We then have also that SOT- $\lim_{n\to\infty} \pi(c_n^{-1})x = x$, and hence taking

a subsequence and replacing c_n with c_n^{-1} if necessary we may assume that the first diagonal entries of c_n are tending to infinity (and hence the first diagonal entries of c_n^{-1} are tending to 0). Since WOT- $\lim_{n\to\infty}\pi(c_n)x=x$ we then have from Mautner's lemma that $\pi(g)x=x$ for all $g\in N_+$. Since we also have WOT- $\lim_{n\to\infty}\pi(c_n^{-1})x=x$, Mautner's lemma also shows that $\pi(g)x=x$ for all $g\in N_-$.

Finally, since $\langle N_+, N_- \rangle = G$ we conclude that x is G-invariant. Since x was an arbitrary vector in the range of $\pi(k\tilde{h})T\pi(\tilde{k})$, and since $\pi(k\tilde{h}),\pi(\tilde{k}) \in \mathrm{Isom}(X)$ it then follows that every vector in the range of T is G-invariant. Thus, T is a projection onto the space of G-invariant vectors.

Restricting Veech's result to Hilbert spaces we obtain:

Corollary 8 (Howe-Moore [HM79]). Let G be a simple Lie group, and $\pi: G \to \mathcal{U}(\mathcal{H})$ a SOT-continuous representation without G-invariant vectors, then $WOT-\lim_{n\to\infty} \pi(g_n)=0$, whenever $g_n\to\infty$.

Corollary 9 (Veech [Vee79]). Let G be a simple Lie group, then $W(G) = \mathbb{C} + C_0(G)$.

Proof. We consider the isometric representation $L: G \to \text{Isom}(W(G))$ given by $L_g(f)(x) = f(g^{-1}x)$. Then it is easy to see that this representation satisfies the hypotheses of the previous theorem and hence for each $f \in W(G)$ there exists $\varphi(f) \in \mathbb{C}$ such that WOT- $\lim_{n\to\infty} L_{g_n}(f) = \varphi(f)$ whenever $g_n \to \infty$. Since point evaluation at e is weakly continuous on W(G) we then conclude that $f(g_n^{-1}) \to \varphi(f)$, and hence $f - \varphi(f) \in C_0(G)$.

References

- [Ell57] Robert Ellis, Locally compact transformation groups, Duke Math. J. 24 (1957), 119–125.
- [For55] M. K. Fort, Jr., Category theorems, Fund. Math. 42 (1955), 276–288.
- [HM79] Roger E. Howe and Calvin C. Moore, Asymptotic properties of unitary representations, J. Funct. Anal. 32 (1979), no. 1, 72–96.
- [Kec95] Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995.
- [Mau57] F. I. Mautner, Geodesic flows on symmetric Riemann spaces, Ann. of Math. (2) 65 (1957), 416–431.
- [Nam74] I. Namioka, Separate continuity and joint continuity, Pacific J. Math. 51 (1974), 515-531.
- [Vee79] William A. Veech, Weakly almost periodic functions on semisimple Lie groups, Monatsh. Math. 88 (1979), no. 1, 55–68.