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The aim of these notes is to prove the main result from [Vee79].
The following lemma is adapted from [Kec95, Theorem 8.51]. It is similar to [Nam74, Theorem 1.2],

which has a slightly stronger conclusion when Y is compact.

Lemma 1. Let X be a topological space, Y and Z metric spaces, and suppose f : X × Y → Z is separately
continuous, i.e., x 7→ f(x, y) is continuous for each y ∈ Y , and y 7→ f(x, y) is continuous for each x ∈ X.
Then for each y ∈ Y , there exists a subset Ey ⊂ X × {y}, which is comeager in X × {y}, such that f is
continuous at each point in Ey.

Proof. For each n, k ∈ N, set

Fn,k = {(x, y) ∈ X × Y | dZ(f(x, u), f(x, v)) ≤ 2−n for all u, v ∈ B(y, 2−k)}.

Since y 7→ f(x, y) is continuous for each x ∈ X we have that X × Y = ∩n ∪k Fn,k.
If {(xi, yi)} ⊂ Fn,k is a net such that xi → x, and yi → y, and if u, v ∈ B(y, 2−k), then we may choose i0

such that u, v ∈ B(yi, 2
−k) for all i ≥ i0, and hence dZ(f(xi, u), f(xi, v)) ≤ 2−n for all i ≥ i0. As x 7→ f(x, u)

and x 7→ f(x, v) are continuous we then have dZ(f(x, u), f(x, v)) ≤ 2−n and hence (x, y) ∈ Fn,k. Thus, we
have shown that Fn,k is closed for each n, k ∈ N.

Fix y ∈ Y and set Dy = ∪n ∪k ∂(Fn,k ∩ (X × {y})). Then Dy is meager in X × {y}, and we will show
that if (x, y) ∈ Ey = (X × {y}) \Dy, then f is continuous at (x, y). Indeed, let ε > 0, and take k, n ∈ N so
that 2−n ≤ ε, and (x, y) ∈ Fn,k. Since x 6∈ Dy we have that x is an interior point in Fn,k ∩ (X × {y}), and
since x 7→ f(x, y) is continuous there then exists an open neighborhood V of x such that V × {y} ⊂ Fn,k,
and dZ(f(x, y), f(s, y)) ≤ ε for all s ∈ V . If s ∈ V , and t ∈ B(y, 2−k) we then have

dZ(f(x, y), f(s, t)) ≤ dZ(f(x, y), f(s, y)) + dZ(f(s, y), f(s, t)) ≤ 2ε.

Corollary 2 (Fort [For55]). Let G be group with a Baire topology such that for each h ∈ G the function
g 7→ hg is continuous. Let X be a metric space, and suppose that GyX is an action such that (g, x) 7→ gx
is separately continuous. Then the action is jointly continuous.

Proof. Fix (g0, x0) ∈ G×X. Since G is Baire, the previous lemma shows that there exists h0 ∈ G such that
the map (g, x) 7→ gx is continuous at (h0, x0). If we first apply the continuous map (g, x) 7→ ((h0g

−1
0 )g, x),

then we see that (g, x) 7→ gx is continuous at (g0, x0).

Corollary 3. Let G be a group with a topology which is metrizable and Baire (e.g., if the topology is Polish).
Suppose that (g, h) 7→ gh is separately continuous, then this map is jointly continuous.
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Proof. We just consider the action of the group on itself given by left multiplication and then apply the
previous corollary.

Theorem 4. Let G be a group with a Baire topology such that multiplication is jointly continuous. Then G
is a topological group, i.e., inversion is continuous.

Proof. It is enough to show that inversion is continuous on a comeager set (and hence at some point since
G is Baire). Indeed, if inversion is continuous at a0 ∈ G and if a ∈ G is arbitrary, then if an → a, then
an(a−1a0) → a0, hence a−10 aa−1n → a−10 , and we then have a−1n → a−1 which shows that inversion is
continuous at a.

Lemma 5. Let G be a Polish group, X a Banach space, and π : G → Isom(X) a SOT-continuous rep-
resentation. If kn, k̃n, gn ∈ G such that kn → k, k̃n → k̃, and WOT-limn→∞ π(gn) = T , then WOT-
limn→∞ π(kngnk̃n) = π(k)Tπ(k̃).

Proof. It is enough to consider the case when X is separable. We first note that it is easy to see that
WOT-limn→∞ π(gnk̃n) = Tπ(k̃). Thus, replacing gn with gnk̃n, and T with Tπ(k̃) we may assume that
k̃n = k̃ = e.

Since X is separable, B(X) is metrizable in the weak operator topology. It is easy to see that the action
of G on B(X) by left multiplication is separately continuous. Fort’s joint continuity theorem then shows that
the action of G on B(X) is jointly continuous. Hence, as kn → k, and WOT-limn→∞ π(gn) = T it follows
that WOT-limn→∞ π(kngn) = π(k)T .

Lemma 6 (Mautner [Mau57]). Let G,X, and π be as above. If g, an ∈ G, such that WOT-limn→∞ π(an) =
T , and a−1n gan → e, then π(g)T = T .

Proof. We have π(g)T =WOT-limn→∞ π(gan) =WOT-limn→∞ π(an(a−1n gnan)) = T .

Theorem 7 (Veech [Vee79]). Let G be a simple Lie group, X a Banach space and π : G → Isom(X) a
SOT-continuous representation such that π(G) is WOT-precompact, then any WOT-cluster point of π(G) is
a projection onto the space of G-invariant vectors.

Proof. We prove only the case G = SL2(R), leaving the general case to the reader. We let A+ denote the
group of diagonal matrices in G which have positive diagonal entries and we let K = SO(2) < G. We recall
the Cartan decomposition G = KA+K.

Suppose gn ∈ G is a sequence converging to infinity in G and let T be a WOT-cluster point. We write
gn = knank̃n in the Cartan decomposition and taking a subsequence we will assume that for k, k̃ ∈ K we
have kn → k, k̃n → k̃, and WOT-limn→∞ π(gn) = T . By Lemma 5 we then have S = WOT-limn→∞ π(an) =
π(k)Tπ(k̃).

Without loss of generality we assume that the first entry in the matrices an are tending to infinity so
that a−1n xan → e for all x ∈ N+. Hence, by Mautner’s lemma we have that π(x)S = S for all x ∈ N+.
Since, N+ is non-compact we may again use the Cartan decomposition to conclude that there is a sequence
bn ∈ A+, hn, h̃n ∈ K, and h, h̃ ∈ K, such that bn → ∞, hn → h, h̃n → h̃, and π(hnbnh̃n)S = S for all
n ∈ N. Therefore we have SOT-limn→∞ π(bn)π(h̃)S = π(h)S.

Now fix x ∈ X in the range of π(h̃)S = π(kh̃)Tπ(k̃). Since bn → ∞, and π(bn)x converges it follows
that for each ε > 0, {b ∈ A+ | ‖π(b)x − x‖ < ε} is non-compact. Thus, there exists a sequence cn ∈ A+

such that SOT-limn→∞ π(cn)x = x. We then have also that SOT-limn→∞ π(c−1n )x = x, and hence taking
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a subsequence and replacing cn with c−1n if necessary we may assume that the first diagonal entries of
cn are tending to infinity (and hence the first diagonal entries of c−1n are tending to 0). Since WOT-
limn→∞ π(cn)x = x we then have from Mautner’s lemma that π(g)x = x for all g ∈ N+. Since we also have
WOT-limn→∞ π(c−1n )x = x, Mautner’s lemma also shows that π(g)x = x for all g ∈ N−.

Finally, since 〈N+, N−〉 = G we conclude that x is G-invariant. Since x was an arbitrary vector in the
range of π(kh̃)Tπ(k̃), and since π(kh̃), π(k̃) ∈ Isom(X) it then follows that every vector in the range of T is
G-invariant. Thus, T is a projection onto the space of G-invariant vectors.

Restricting Veech’s result to Hilbert spaces we obtain:

Corollary 8 (Howe-Moore [HM79]). Let G be a simple Lie group, and π : G → U(H) a SOT-continuous
representation without G-invariant vectors, then WOT− limn→∞ π(gn) = 0, whenever gn →∞.

Corollary 9 (Veech [Vee79]). Let G be a simple Lie group, then W (G) = C + C0(G).

Proof. We consider the isometric representation L : G→ Isom(W (G)) given by Lg(f)(x) = f(g−1x). Then
it is easy to see that this representation satisfies the hypotheses of the previous theorem and hence for
each f ∈ W (G) there exists ϕ(f) ∈ C such that WOT-limn→∞ Lgn(f) = ϕ(f) whenever gn → ∞. Since
point evaluation at e is weakly continuous on W (G) we then conclude that f(g−1n ) → ϕ(f), and hence
f − ϕ(f) ∈ C0(G).
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